Copied to
clipboard

G = C42.134D10order 320 = 26·5

134th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.134D10, C10.142- 1+4, (C4×Q8)⋊16D5, (Q8×C20)⋊18C2, C4⋊C4.301D10, (C4×Dic10)⋊40C2, C4.50(C4○D20), (C2×Q8).182D10, C4.Dic1017C2, C20.6Q827C2, C42⋊D5.5C2, C422D5.2C2, Dic5⋊Q810C2, C20.121(C4○D4), (C2×C10).127C24, (C4×C20).179C22, (C2×C20).624C23, D103Q8.11C2, D102Q8.11C2, Dic5.Q810C2, C4⋊Dic5.370C22, (Q8×C10).227C22, (C2×Dic5).58C23, (C4×Dic5).95C22, (C22×D5).49C23, C22.148(C23×D5), C52(C22.35C24), C10.D4.78C22, C2.24(D4.10D10), D10⋊C4.126C22, C2.15(Q8.10D10), (C2×Dic10).300C22, C4⋊C4⋊D5.1C2, C10.57(C2×C4○D4), C2.66(C2×C4○D20), (C2×C4×D5).86C22, (C5×C4⋊C4).355C22, (C2×C4).290(C22×D5), SmallGroup(320,1255)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.134D10
C1C5C10C2×C10C22×D5C2×C4×D5D102Q8 — C42.134D10
C5C2×C10 — C42.134D10
C1C22C4×Q8

Generators and relations for C42.134D10
 G = < a,b,c,d | a4=b4=1, c10=a2b2, d2=a2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=b2c9 >

Subgroups: 574 in 192 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, Q8, C23, D5, C10, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, C42⋊C2, C4×Q8, C4×Q8, C22⋊Q8, C42.C2, C422C2, C4⋊Q8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C22.35C24, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, D10⋊C4, C4×C20, C4×C20, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, Q8×C10, C4×Dic10, C20.6Q8, C42⋊D5, C422D5, Dic5.Q8, C4.Dic10, D102Q8, C4⋊C4⋊D5, Dic5⋊Q8, D103Q8, Q8×C20, C42.134D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2- 1+4, C22×D5, C22.35C24, C4○D20, C23×D5, C2×C4○D20, Q8.10D10, D4.10D10, C42.134D10

Smallest permutation representation of C42.134D10
On 160 points
Generators in S160
(1 148 72 46)(2 47 73 149)(3 150 74 48)(4 49 75 151)(5 152 76 50)(6 51 77 153)(7 154 78 52)(8 53 79 155)(9 156 80 54)(10 55 61 157)(11 158 62 56)(12 57 63 159)(13 160 64 58)(14 59 65 141)(15 142 66 60)(16 41 67 143)(17 144 68 42)(18 43 69 145)(19 146 70 44)(20 45 71 147)(21 114 90 138)(22 139 91 115)(23 116 92 140)(24 121 93 117)(25 118 94 122)(26 123 95 119)(27 120 96 124)(28 125 97 101)(29 102 98 126)(30 127 99 103)(31 104 100 128)(32 129 81 105)(33 106 82 130)(34 131 83 107)(35 108 84 132)(36 133 85 109)(37 110 86 134)(38 135 87 111)(39 112 88 136)(40 137 89 113)
(1 101 62 135)(2 102 63 136)(3 103 64 137)(4 104 65 138)(5 105 66 139)(6 106 67 140)(7 107 68 121)(8 108 69 122)(9 109 70 123)(10 110 71 124)(11 111 72 125)(12 112 73 126)(13 113 74 127)(14 114 75 128)(15 115 76 129)(16 116 77 130)(17 117 78 131)(18 118 79 132)(19 119 80 133)(20 120 61 134)(21 49 100 141)(22 50 81 142)(23 51 82 143)(24 52 83 144)(25 53 84 145)(26 54 85 146)(27 55 86 147)(28 56 87 148)(29 57 88 149)(30 58 89 150)(31 59 90 151)(32 60 91 152)(33 41 92 153)(34 42 93 154)(35 43 94 155)(36 44 95 156)(37 45 96 157)(38 46 97 158)(39 47 98 159)(40 48 99 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 72 61)(2 80 73 9)(3 8 74 79)(4 78 75 7)(5 6 76 77)(11 20 62 71)(12 70 63 19)(13 18 64 69)(14 68 65 17)(15 16 66 67)(21 24 90 93)(22 92 91 23)(25 40 94 89)(26 88 95 39)(27 38 96 87)(28 86 97 37)(29 36 98 85)(30 84 99 35)(31 34 100 83)(32 82 81 33)(41 142 143 60)(42 59 144 141)(43 160 145 58)(44 57 146 159)(45 158 147 56)(46 55 148 157)(47 156 149 54)(48 53 150 155)(49 154 151 52)(50 51 152 153)(101 134 125 110)(102 109 126 133)(103 132 127 108)(104 107 128 131)(105 130 129 106)(111 124 135 120)(112 119 136 123)(113 122 137 118)(114 117 138 121)(115 140 139 116)

G:=sub<Sym(160)| (1,148,72,46)(2,47,73,149)(3,150,74,48)(4,49,75,151)(5,152,76,50)(6,51,77,153)(7,154,78,52)(8,53,79,155)(9,156,80,54)(10,55,61,157)(11,158,62,56)(12,57,63,159)(13,160,64,58)(14,59,65,141)(15,142,66,60)(16,41,67,143)(17,144,68,42)(18,43,69,145)(19,146,70,44)(20,45,71,147)(21,114,90,138)(22,139,91,115)(23,116,92,140)(24,121,93,117)(25,118,94,122)(26,123,95,119)(27,120,96,124)(28,125,97,101)(29,102,98,126)(30,127,99,103)(31,104,100,128)(32,129,81,105)(33,106,82,130)(34,131,83,107)(35,108,84,132)(36,133,85,109)(37,110,86,134)(38,135,87,111)(39,112,88,136)(40,137,89,113), (1,101,62,135)(2,102,63,136)(3,103,64,137)(4,104,65,138)(5,105,66,139)(6,106,67,140)(7,107,68,121)(8,108,69,122)(9,109,70,123)(10,110,71,124)(11,111,72,125)(12,112,73,126)(13,113,74,127)(14,114,75,128)(15,115,76,129)(16,116,77,130)(17,117,78,131)(18,118,79,132)(19,119,80,133)(20,120,61,134)(21,49,100,141)(22,50,81,142)(23,51,82,143)(24,52,83,144)(25,53,84,145)(26,54,85,146)(27,55,86,147)(28,56,87,148)(29,57,88,149)(30,58,89,150)(31,59,90,151)(32,60,91,152)(33,41,92,153)(34,42,93,154)(35,43,94,155)(36,44,95,156)(37,45,96,157)(38,46,97,158)(39,47,98,159)(40,48,99,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,72,61)(2,80,73,9)(3,8,74,79)(4,78,75,7)(5,6,76,77)(11,20,62,71)(12,70,63,19)(13,18,64,69)(14,68,65,17)(15,16,66,67)(21,24,90,93)(22,92,91,23)(25,40,94,89)(26,88,95,39)(27,38,96,87)(28,86,97,37)(29,36,98,85)(30,84,99,35)(31,34,100,83)(32,82,81,33)(41,142,143,60)(42,59,144,141)(43,160,145,58)(44,57,146,159)(45,158,147,56)(46,55,148,157)(47,156,149,54)(48,53,150,155)(49,154,151,52)(50,51,152,153)(101,134,125,110)(102,109,126,133)(103,132,127,108)(104,107,128,131)(105,130,129,106)(111,124,135,120)(112,119,136,123)(113,122,137,118)(114,117,138,121)(115,140,139,116)>;

G:=Group( (1,148,72,46)(2,47,73,149)(3,150,74,48)(4,49,75,151)(5,152,76,50)(6,51,77,153)(7,154,78,52)(8,53,79,155)(9,156,80,54)(10,55,61,157)(11,158,62,56)(12,57,63,159)(13,160,64,58)(14,59,65,141)(15,142,66,60)(16,41,67,143)(17,144,68,42)(18,43,69,145)(19,146,70,44)(20,45,71,147)(21,114,90,138)(22,139,91,115)(23,116,92,140)(24,121,93,117)(25,118,94,122)(26,123,95,119)(27,120,96,124)(28,125,97,101)(29,102,98,126)(30,127,99,103)(31,104,100,128)(32,129,81,105)(33,106,82,130)(34,131,83,107)(35,108,84,132)(36,133,85,109)(37,110,86,134)(38,135,87,111)(39,112,88,136)(40,137,89,113), (1,101,62,135)(2,102,63,136)(3,103,64,137)(4,104,65,138)(5,105,66,139)(6,106,67,140)(7,107,68,121)(8,108,69,122)(9,109,70,123)(10,110,71,124)(11,111,72,125)(12,112,73,126)(13,113,74,127)(14,114,75,128)(15,115,76,129)(16,116,77,130)(17,117,78,131)(18,118,79,132)(19,119,80,133)(20,120,61,134)(21,49,100,141)(22,50,81,142)(23,51,82,143)(24,52,83,144)(25,53,84,145)(26,54,85,146)(27,55,86,147)(28,56,87,148)(29,57,88,149)(30,58,89,150)(31,59,90,151)(32,60,91,152)(33,41,92,153)(34,42,93,154)(35,43,94,155)(36,44,95,156)(37,45,96,157)(38,46,97,158)(39,47,98,159)(40,48,99,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,72,61)(2,80,73,9)(3,8,74,79)(4,78,75,7)(5,6,76,77)(11,20,62,71)(12,70,63,19)(13,18,64,69)(14,68,65,17)(15,16,66,67)(21,24,90,93)(22,92,91,23)(25,40,94,89)(26,88,95,39)(27,38,96,87)(28,86,97,37)(29,36,98,85)(30,84,99,35)(31,34,100,83)(32,82,81,33)(41,142,143,60)(42,59,144,141)(43,160,145,58)(44,57,146,159)(45,158,147,56)(46,55,148,157)(47,156,149,54)(48,53,150,155)(49,154,151,52)(50,51,152,153)(101,134,125,110)(102,109,126,133)(103,132,127,108)(104,107,128,131)(105,130,129,106)(111,124,135,120)(112,119,136,123)(113,122,137,118)(114,117,138,121)(115,140,139,116) );

G=PermutationGroup([[(1,148,72,46),(2,47,73,149),(3,150,74,48),(4,49,75,151),(5,152,76,50),(6,51,77,153),(7,154,78,52),(8,53,79,155),(9,156,80,54),(10,55,61,157),(11,158,62,56),(12,57,63,159),(13,160,64,58),(14,59,65,141),(15,142,66,60),(16,41,67,143),(17,144,68,42),(18,43,69,145),(19,146,70,44),(20,45,71,147),(21,114,90,138),(22,139,91,115),(23,116,92,140),(24,121,93,117),(25,118,94,122),(26,123,95,119),(27,120,96,124),(28,125,97,101),(29,102,98,126),(30,127,99,103),(31,104,100,128),(32,129,81,105),(33,106,82,130),(34,131,83,107),(35,108,84,132),(36,133,85,109),(37,110,86,134),(38,135,87,111),(39,112,88,136),(40,137,89,113)], [(1,101,62,135),(2,102,63,136),(3,103,64,137),(4,104,65,138),(5,105,66,139),(6,106,67,140),(7,107,68,121),(8,108,69,122),(9,109,70,123),(10,110,71,124),(11,111,72,125),(12,112,73,126),(13,113,74,127),(14,114,75,128),(15,115,76,129),(16,116,77,130),(17,117,78,131),(18,118,79,132),(19,119,80,133),(20,120,61,134),(21,49,100,141),(22,50,81,142),(23,51,82,143),(24,52,83,144),(25,53,84,145),(26,54,85,146),(27,55,86,147),(28,56,87,148),(29,57,88,149),(30,58,89,150),(31,59,90,151),(32,60,91,152),(33,41,92,153),(34,42,93,154),(35,43,94,155),(36,44,95,156),(37,45,96,157),(38,46,97,158),(39,47,98,159),(40,48,99,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,72,61),(2,80,73,9),(3,8,74,79),(4,78,75,7),(5,6,76,77),(11,20,62,71),(12,70,63,19),(13,18,64,69),(14,68,65,17),(15,16,66,67),(21,24,90,93),(22,92,91,23),(25,40,94,89),(26,88,95,39),(27,38,96,87),(28,86,97,37),(29,36,98,85),(30,84,99,35),(31,34,100,83),(32,82,81,33),(41,142,143,60),(42,59,144,141),(43,160,145,58),(44,57,146,159),(45,158,147,56),(46,55,148,157),(47,156,149,54),(48,53,150,155),(49,154,151,52),(50,51,152,153),(101,134,125,110),(102,109,126,133),(103,132,127,108),(104,107,128,131),(105,130,129,106),(111,124,135,120),(112,119,136,123),(113,122,137,118),(114,117,138,121),(115,140,139,116)]])

62 conjugacy classes

class 1 2A2B2C2D4A···4F4G4H4I4J4K···4Q5A5B10A···10F20A···20H20I···20AF
order122224···444444···45510···1020···2020···20
size1111202···2444420···20222···22···24···4

62 irreducible representations

dim111111111111222222444
type++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10C4○D202- 1+4Q8.10D10D4.10D10
kernelC42.134D10C4×Dic10C20.6Q8C42⋊D5C422D5Dic5.Q8C4.Dic10D102Q8C4⋊C4⋊D5Dic5⋊Q8D103Q8Q8×C20C4×Q8C20C42C4⋊C4C2×Q8C4C10C2C2
# reps1121221121112466216244

Matrix representation of C42.134D10 in GL6(𝔽41)

100000
010000
003101411
000311414
00214100
002021010
,
900000
090000
00174000
0012400
00002440
0000117
,
15370000
36260000
00773211
0034401132
001928134
002319734
,
2640000
26150000
00773211
0040341114
00281910
001923740

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,0,21,20,0,0,0,31,4,21,0,0,14,14,10,0,0,0,11,14,0,10],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,17,1,0,0,0,0,40,24,0,0,0,0,0,0,24,1,0,0,0,0,40,17],[15,36,0,0,0,0,37,26,0,0,0,0,0,0,7,34,19,23,0,0,7,40,28,19,0,0,32,11,1,7,0,0,11,32,34,34],[26,26,0,0,0,0,4,15,0,0,0,0,0,0,7,40,28,19,0,0,7,34,19,23,0,0,32,11,1,7,0,0,11,14,0,40] >;

C42.134D10 in GAP, Magma, Sage, TeX

C_4^2._{134}D_{10}
% in TeX

G:=Group("C4^2.134D10");
// GroupNames label

G:=SmallGroup(320,1255);
// by ID

G=gap.SmallGroup(320,1255);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,268,675,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=a^2*b^2,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^9>;
// generators/relations

׿
×
𝔽